When an electric current flows into the capacitor, it charges up, so the electrostatic field becomes much stronger as it stores more energy between the plates.
A capacitor is an electronic component to store electric charge. It is a passive electronic component that can store energy in the electric field between a pair of conductors called “Plates”. In simple words, we can say that a capacitor is a component to store and release electricity, generally as the result of a chemical action.
In electrical electronics, the component used to store electrical energy in an electric field is known as a “Capacitor”. It is a passive device that can store an electrical charge on its plates when connected to a voltage source. Capacitors contain two-terminal and their effect is known as capacitance.
In electrical engineering, a capacitor is a device that stores electrical energy by accumulating electric charges on two closely spaced surfaces that are insulated from each other. The capacitor was originally known as the condenser, a term still encountered in a few compound names, such as the condenser microphone.
The capacitance of a parallel-plate capacitor is given by C=ε/Ad, where ε=Kε 0 for a dielectric-filled capacitor. Adding a dielectric increases the capacitance by a factor of K, the dielectric constant. The energy density (electric potential energy per unit volume) of the electric field between the plates is:
Electrical field lines in a parallel-plate capacitor begin with positive charges and end with negative charges. The magnitude of the electrical field in the space between the plates is in direct proportion to the amount of charge on the capacitor.