Monocrystalline silicon solar cells (M-Si) are made of a single silicon crystal with a uniform structure that is highly efficient. Polycrystalline silicon solar cells (P-Si) are made of many silicon crystals and have lower performance. Thin-film cells are obtained by depositing several layers of PV material on a base.
Monocrystalline solar cells are made from single crystalline silicon. They are very distinctive in their appearance as they are often coloured, and the cells hold a cylindrical shape. In order to keep the costs low and performance at optimal levels, manufacturers cut out the four sides of the monocrystalline cells.
A common example of a polycrystalline cell is polycrystalline silicon. Cell efficiency typically is 13% to 15%. Polycrystalline silicon is also widely used because it is less expensive than monocrystalline silicon. A variation on the polycrystalline silicon wafer is ribbon silicon, which is formed by drawing flat thin films from molten silicon.
An example of a monocrystalline semiconductor is monocrystalline silicon. This is the most widely used type of silicon in wafer-type solar cells because it has the highest efficiency. The drawback is that it is also the most expensive.
Solar cells will always be more efficient than their modules. Even though monocrystalline solar cells have reached efficiency above 25% in labs, the efficiency of monocrystalline modules in the field has never crossed 23%. There are some advantages of monocrystalline solar cells over polycrystalline solar cells.
They exhibit a dark black hue. All the corners of the cells are clipped; this happens during the manufacturing process. Another distinguishing feature is their rigidity and fragility. You will never find monocrystalline cells in a flexible form because of their large thickness.