However, lithium-ion batteries are temperature-sensitive, and a battery thermal management system (BTMS) is an essential component of commercial lithium-ion battery energy storage systems. Liquid cooling, due to its high thermal conductivity, is widely used in battery thermal management systems.
With the increasing application of the lithium-ion battery, higher requirements are put forward for battery thermal management systems. Compared with other cooling methods, liquid cooling is an efficient cooling method, which can control the maximum temperature and maximum temperature difference of the battery within an acceptable range.
Liquid cooling, due to its high thermal conductivity, is widely used in battery thermal management systems. This paper first introduces thermal management of lithium-ion batteries and liquid-cooled BTMS.
Combined with the related research on the thermal management technology of the lithium-ion battery, five liquid-cooled temperature control models are designed for thermal management, and their temperature control simulation and effect analysis are carried out.
Luo et al. achieved the ideal operating temperature of lithium-ion batteries by integrating thermoelectric cooling with water and air cooling systems. A hydraulic-thermal-electric multiphysics model was developed to evaluate the system's thermal performance.
Herein, thermal management of lithium-ion battery has been performed via a liquid cooling theoretical model integrated with thermoelectric model of battery packs and single-phase heat transfer.