The journey of photovoltaic (PV) cell technology is a testament to human ingenuity and the relentless pursuit of sustainable energy solutions. From the early days of solar energy exploration to the sophisticated systems of today, the evolution of PV cells has been marked by groundbreaking advancements in materials and manufacturing processes.
A typical solar cell is made up of materials like silicon, silver (Ag) and, aluminium (Al) [11, 12]. An anti-reflective coating (ARC) is applied to reduce reflection losses and improve the power conversion efficiency of solar cells.
A typical silicon PV cell is a thin wafer, usually square or rectangular wafers with dimensions 10cm × 10cm × 0.3mm, consisting of a very thin layer of phosphorous-doped (N-type) silicon on top of a thicker layer of boron-doped (p-type) silicon. You might find these chapters and articles relevant to this topic.
Nature 626, 105–110 (2024) Cite this article Silicon solar cells are a mainstay of commercialized photovoltaics, and further improving the power conversion efficiency of large-area and flexible cells remains an important research objective 1, 2.
PV Solar Industry and Trends Approximately 95% of the total market share of solar cells comes from crystalline silicon materials . The reasons for silicon’s popularity within the PV market are that silicon is available and abundant, and thus relatively cheap.
A polycrystalline PV cell (Fig. 1 A) is primarily composed of high purity silicon and has silver busbars running on both front and back surfaces. The apparent blue colour of the front surface is due to the presence of the ARC, which is typically made up of silicon nitride (SiN x).