The operational principles of thermal energy storage systems are identical as other forms of energy storage methods, as mentioned earlier. A typical thermal energy storage system consists of three sequential processes: charging, storing, and discharging periods.
Along with the form of energy demand, the demand rate is another significant parameter to determine the energy storage methods. For example, flywheels are an effective method to storage electricity for high charging and discharging rates and quick-response demands comparing to the batteries.
In order to design an optimum energy storage system and operate it effectively, five criteria given above should be considered carefully. The storage material, medium, and system components should be designed considering the first and second laws of thermodynamics.
In this chapter, fundamental considerations of energy conversion and storage devices are summarized to solve challenges related to the utilization of nonrenewable fossil fuel energy sources (coal, gas, and oil), such as increasing CO 2 emission because of human activities and global warming.
Provided by the Springer Nature SharedIt content-sharing initiative Policies and ethics An energy storage system is an efficient and effective way of balancing the energy supply and demand profiles, and helps reducing the cost of energy and reducing peak loads as well. Energy can be stored in various forms of energy in a variety of ways.
Thermal energy can generally be stored in two ways: sensible heat storage and latent heat storage. It is also possible to store thermal energy in a combination of sensible and latent, which is called hybrid thermal energy storage. Figure 2.8 shows the branch of thermal energy storage methods.