Pawlitzek, F.; Althues, H.; Schumm, B.; Kaskel, S. Nanostructured networks for energy storage: Vertically aligned carbon nanotubes (VACNT) as current collectors for high-power Li 4 Ti 5 O 12 (LTO)//LiMn 2 O 4 (LMO) lithium-ion batteries. Batteries 2017, 3, 37.
A versatile carbon nanotube-based scalable approach for improving interfaces in Li-ion battery electrodes. ACS Omega. 2018, 3, 4502–4508. Cao, W. J.; Greenleaf, M.; Li, Y. X.; Adams, D.; Hagen, M.; Doung, T.; Zheng, J. P. The effect of lithium loadings on anode to the voltage drop during charge and discharge of Li-ion capacitors. J.
Significant efforts have been devoted to material synthesis and structural designs to realize the mechanical flexibility of various batteries. Carbon nanotubes (CNTs) have a unique one-dimensional (1D) nanostructure and are convenient to further assemble into diverse macroscopic structures, such as 1D fibers, 2D films and 3D sponges/aerogels.
A comparative study of electrochemical properties of two kinds of carbon nanotubes as anode materials for lithium ion batteries. Electrochim. Acta. 2008, 53, 2238–2244.
A novel germanium/carbon nanotubes nanocomposite for lithium storage material. Electrochim. Acta 2010, 55, 985–988. Susantyoko, R. A.; Wang, X. H.; Sun, L. M.; Pey, K. L.; Fitzgerald, E.; Zhang, Q. Germanium coated vertically-aligned multiwall carbon nanotubes as lithium-ion battery anodes. Carbon 2014, 77, 551–559.
Yitzhack, N.; Auinat, M.; Sezin, N.; Ein-Eli, Y. Carbon nanotube tissue as anode current collector for flexible Li-ion batteries—Understanding the controlling parameters influencing the electrochemical performance. APL Mater. 2018, 6, 111102.