This makes it more difficult and expensive to store and transport hydrogen for use as a fuel (Rivard et al. 2019). There are several storage methods that can be used to address this challenge, such as compressed gas storage, liquid hydrogen storage, and solid-state storage.
Hydrogen storage is the key technology that will enable hydrogen and fuel cell technologies in automotive powertrains to advance. While hydrogen has the highest energy per mass of any fuel, its low density at ambient temperature means it has a low energy per unit of volume. Methods of hydrogen storage are physical containment where it is stored as:
Hydrogen energy storage allows you to separate power from energy, which is important when you consider how you can reasonably scale to GWhr capacities. The energy storage in an HES system is really the molecules in the tank, much like any fuel.
Stored hydrogen in the form of compressed gas can be distributed in dedicated pipelines over a long distance, while the liquid stored hydrogen can be transported in tankers by rail, ship or road to the urban area. Unlike other mentioned energy storages above, the hydrogen energy can be produced close to the point of use . Samuel C. Johnson, ...
The electrolytic cell is the core of the hydrogen storage system, in which electrical energy is converted into heat and chemical water to obtain O 2 and hydrogen. The compressor is used to compress H 2 and store it in the high-pressure gas storage tank [18,19,29]. Fig. 10. Hydrogen storage system.
As a result, storing sufficient amounts of hydrogen for practical use can be challenging. Different storage methods, such as compressed gas, liquid hydrogen, and solid-state storage, each have their advantages and limitations, with trade-offs between storage capacity, safety, and cost.