Aluminum foils having thicknesses of 10–20 μm are commonly employed as current collectors for cathode electrodes in Li-ion batteries. The effects of the surface morphology of the foil on battery performance were investigated by using a foil with roughened surface by chemical etching and a plain foil with smooth surface on both sides.
In summary, low-cost aluminum foils are employed as single-material anodes for Li-ion batteries that can match various commercial cathodes and potentially achieve higher energy densities. The roles of pre-lithiation, phase change, and morphology evolution on commercial Al foil anodes are comprehensively studied in Al||NCM full batteries.
The research team knew that aluminum would have energy, cost, and manufacturing benefits when used as a material in the battery's anode -- the negatively charged side of the battery that stores lithium to create energy -- but pure aluminum foils were failing rapidly when tested in batteries. The team decided to take a different approach.
The proposed surface architecture and working mechanism of lithium supplement could effectively eliminate the remaining challenges of high-capacity Al anodes, promoting the possibility of using commercial aluminum foils as single-material anodes for high energy density lithium-ion batteries.
But for low-conductivity LiFePO 4 active materials with small particle size, high-rate discharge properties are significantly different. The possibility shows that optimizing both the surface morphology of the aluminum foil and particle size of active material leads to improvement of the battery performance.
Textured or Roughened Aluminum Foil: Texturing or roughening the surface of aluminum foil can increase the available surface area for electrochemical reactions. This type of aluminum foil is commonly used in batteries where maximizing the electrode/electrolyte interface is crucial, such as lithium-ion batteries.