The new energy storage charging pile system for EV is mainly composed of two parts: a power regulation system and a charge and discharge control system. The power regulation system is the energy transmission link between the power grid, the energy storage battery pack, and the battery pack of the EV.
On the one hand, the energy storage charging pile interacts with the battery management system through the CAN bus to manage the whole process of charging.
Battery energy storage systems (BESS) Electrochemical methods, primarily using batteries and capacitors, can store electrical energy. Batteries are considered to be well-established energy storage technologies that include notable characteristics such as high energy densities and elevated voltages .
Hazardous conditions due to low-temperature charging or operation can be mitigated in large ESS battery designs by including a sensing logic that determines the temperature of the battery and provides heat to the battery and cells until it reaches a value that would be safe for charge as recommended by the battery manufacturer.
Based on the Internet of Things technology, the energy storage charging pile management system is designed as a three-layer structure, and its system architecture is shown in Figure 9. The perception layer is energy storage charging pile equipment.
As the most fundamental energy storage unit of the battery storage system, the battery safety performance is an essential condition for guaranteeing the reliable operation of the energy storage power plant. LIBs are usually composed of four basic materials: cathode, anode, diaphragm and electrolyte .