Again, as in that case, we can store energy in the magnetic fields of the inductor, and that energy is going to be equal to one-half inductance of the inductor times the square of the current flowing through the inductor.
Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of direct current in a superconducting coil that has been cryogenically cooled to a temperature below its superconducting critical temperature. This use of superconducting coils to store magnetic energy was invented by M. Ferrier in 1970.
The energy, stored within this magnetic field, is released back into the circuit when the current ceases. The energy stored in an inductor can be quantified by the formula \ ( W = \frac {1} {2} L I^ {2} \), where \ ( W \) is the energy in joules, \ ( L \) is the inductance in henries, and \ ( I \) is the current in amperes.
So, the magnetic energy of an inductor will be equal to one-half L times inductance times square of the current flowing through that inductor. So, through inductors again, we can generate magnetic field packages similar to the case of capacitors, which enable us to generate or produce electric field packages.
Current must continue to flow to maintain the magnetic field. The area under the power curve in Figure 2 represents the energy stored by the inductance and is equal to the product of the average power and the elapsed time. The energy stored in the magnetic field of an inductor can be written as:
The voltage across the inductance has dropped to zero, so the power p = vi is also zero. Thus, the energy stored by the inductor increases only while the current is building up to its steady-state value. When the current remains constant, the energy stored in the magnetic field is also constant.
OverviewAdvantages over other energy storage methodsCurrent useSystem architectureWorking principleSolenoid versus toroidLow-temperature versus high-temperature superconductorsCost
Superconducting magnetic energy storage (SMES) systems store energy in the magnetic field created by the flow of direct current in a superconducting coil that has been cryogenically cooled to a temperature below its superconducting critical temperature. This use of superconducting coils to store magnetic energy was invented by M. Ferrier in 1970. A typical SMES system includes three parts: superconducting coil, power conditioning system a…