Discussion: The proposed liquid cooling structure design can effectively manage and disperse the heat generated by the battery. This method provides a new idea for the optimization of the energy efficiency of the hybrid power system. This paper provides a new way for the efficient thermal management of the automotive power battery.
To verify the effectiveness of the cooling function of the liquid cooled heat dissipation structure designed for vehicle energy storage batteries, it was applied to battery modules to analyze their heat dissipation efficiency.
Bulut et al. conducted predictive research on the effect of battery liquid cooling structure on battery module temperature using an artificial neural network model. The research results indicated that the power consumption reduced by 22.4% through optimization. The relative error of the prediction results was less than 1% (Bulut et al., 2022).
The effects of the cooling surface, the number of inlets, the direction of coolant flow, the mass flow rate of inlets, and charging rates on the evaluation indexes were studied to solve the problems of heat accumulation and excessive temperature gradient inside the battery module. 2. Physical model and calculation methods 2.1.
The battery liquid cooling heat dissipation structure uses liquid, which carries away the heat generated by the battery through circulating flow, thereby achieving heat dissipation effect (Yi et al., 2022).
Based on this, Wei et al. designed a variable-temperature liquid cooling to modify the temperature homogeneity of power battery module at high temperature conditions. Results revealed that the maximum temperature difference of battery pack is reduced by 36.1 % at the initial stage of discharge.