Although these processes are reversed during cell charge in secondary batteries, the positive electrode in these systems is still commonly, if somewhat inaccurately, referred to as the cathode, and the negative as the anode. Cathode active material in Lithium Ion battery are most likely metal oxides. Some of the common CAM are given below
Lithium nickel cobalt aluminium oxide is a class of cathode active material used in LIBs. NCA batteries are used in several high cost, high performance EVs. Next-generation NCA-type cathodes include lithium nickel cobalt manganese aluminium oxides (NMCA). Lithium nickel manganese cobalt oxide is a class of cathode active material used in LIBs.
Lithium layered cathode materials, such as LCO, LMO, LFP, NCA, and NMC, find application in Li-ion batteries. Among these, LCO, LMO, and LFP are the most widely employed cathode materials, along with various other lithium-layered metal oxides (Heidari and Mahdavi, 2019, Zhang et al., 2014).
Cathode active materials (CAM) are typically composed of metal oxides. The most common cathode materials used in lithium-ion batteries include lithium cobalt oxide (LiCoO2), lithium manganese oxide (LiMn2O4), lithium iron phosphate (LiFePO4 or LFP), and lithium nickel manganese cobalt oxide (LiNiMnCoO2 or NMC).
As anode materials offer a higher Li-ion storage capacity than cathodes do, the cathode material is the limiting factor in the performance of Li-ion batteries , . The energy density of a Li-ion battery is often determined collectively by the Li-ion storage capacity and the discharge potential of the cell.
Cathode materials The positive electrode, known as the cathode, in a cell is associated with reductive chemical reactions. This cathode material serves as the primary and active source of most of the lithium ions in Li-ion battery chemistries (Tetteh, 2023).