The effects of indium tin oxide (ITO) films on the performance of heterojunction silicon wafer solar cells is investigated, using heterojunction (HET) solar cell precursors. Different ITO deposition conditions are used, which result in significant differences in the performance of HET solar cells.
Reducing indium consumption has received increasing attention in contact schemes of high efficiency silicon heterojunction (SHJ) solar cells. It is imperative to discover suitable, low-cost, and resource-abundant transparent electrodes to replace the conventional, resource-scarce indium-based transparent electrodes.
Silicon heterojunction devices rely on the use of thin‐film silicon coatings on either side of the wafer to provide surface passivation and charge carrier‐selectivity. Beyond traditional indium tin oxide, multiple higher‐mobility indium‐based transparent conductive oxides have been employed successfully in HJT cells.
TTO was applied to SHJ solar cells to obtain efficient indium-free SHJ solar cells. TTO-based indium-free SHJ solar cell achieved an efficiency of 25.15 % with a certified efficiency of 25.10 % (274.3 cm 2). Reducing indium consumption has received increasing attention in contact schemes of high efficiency silicon heterojunction (SHJ) solar cells.
Silicon heterojunction (SHJ) solar cells are recognized as one of the most efficient architectures in silicon-based photovoltaic devices. However, the reliance on indium (In)-based transparent conductive oxides (TCO) is anticipated to constrain their production capacity due to the critical and economically volatile nature of In.
Nonetheless, the indium contained in ITO is a rare metal with limited reserves and mining capacity, resulting in higher production costs . This poses a significant hurdle to the future expansion of heterojunction solar cell industry.