5. Conclusion and perspective Silicon is considered one of the most promising anode materials for next-generation state-of-the-art high-energy lithium-ion batteries (LIBs) because of its ultrahigh theoretical capacity, relatively low working potential and abundant reserves.
This work provides new science related to the interfacial stability of Si-based materials while granting positive exposure to ionic liquid electrochemistry. Silicon is a promising anode material for lithium ion batteries, but suffers from structural degradation during operations.
But, in a solid state battery, the ions on the surface of the silicon are constricted and undergo the dynamic process of lithiation to form lithium metal plating around the core of silicon. “In our design, lithium metal gets wrapped around the silicon particle, like a hard chocolate shell around a hazelnut core in a chocolate truffle,” said Li.
The advanced characterization techniques used in the investigation of silicon-based solid-state-batteries were summarized. Solid-state batteries (SSBs) have been widely considered as the most promising technology for next-generation energy storage systems.
In fact, very recently also solid-state electrolytes, being either organic (i.e., polymers), inorganic, or hybrid, have been studied for lithium-ion battery applications, even though the focus here is so far clearly on the use with lithium-metal anodes.
Silicon anode lithium-ion batteries (LIBs) have received tremendous attention because of their merits, which include a high theoretical specific capacity, low working potential, and abundant sources. The past decade has witnessed significant developments in terms of extending the lifespan and maintaining the high capacities of Si LIBs.