Optimal planning of distributed energy storage systems in active distribution networks embedding grid reconfiguration ). 4. Optimal planning of storage in power systems integrated with wind power generation ). 5. Optimal placement and sizing of battery storage to increase the pv hosting capacity of low voltage grids .
Regardless of the time of energy production, the storage provides the energy generated by the PV generator to electrical appliances. Supply and demand can be adjusted to each other. The integrated storage system is designed to cover 100 % of the demand with the energy generated by the PV system during the summer.
Electrical energy storage systems (EESS) for electrical installations are becoming more prevalent. EESS provide storage of electrical energy so that it can be used later. The approach is not new: EESS in the form of battery-backed uninterruptible power supplies (UPS) have been used for many years. EESS are starting to be used for other purposes.
Electricity can be stored in a variety of ways, including in batteries, by compressing air, by making hydrogen using electrolysers, or as heat. Storing hydrogen in solution-mined salt caverns will be the best way to meet the long-term storage need as it has the lowest cost per unit of energy storage capacity.
With a reinforced power grid, regional overproduction can be compensated for by energy transmission to temporarily less productive areas. The amount of energy storage can also be reduced by overinstallation of renewable energy generators. With this approach even weakly producing periods are adequate for the load expected.
Many storage systems are connected to the grid via power electronics components, including the converter which modulates the waveforms of current and voltage to a level that can be fed into or taken from the grid directly. Sometimes the converter is connected to a transformer before the grid connection in order to provide the required voltage.