As stated earlier, this changing opposition of a capacitor is called capacitive reactance and is inversely related to the source frequency. Capacitive reactance is measured in ohms of reactance like resistance, and depends on the frequency of the applied voltage and the value of the capacitor. where 2π =6.28. The symbol for reactance is X.
Capacitive reactance can be thought of as a variable resistance inside a capacitor being controlled by the applied frequency. Unlike resistance which is not dependent on frequency, in an AC circuit reactance is affected by supply frequency and behaves in a similar manner to resistance, both being measured in Ohms.
The reactance of capacitor of the capacitor is inversely proportional to the frequency. The relationship between capacitive reactance and frequency is as shown below. Calculate the reactance of capacitor value of a 110nF capacitor at a frequency of 5kHz and again at a frequency of 10kHz. Capacitance Value = 110 nF = 110 X 10 -9 Farad XC at 5 KHz
Unlike resistance which has a fixed value, for example, 100Ω, 1kΩ, 10kΩ etc, (this is because resistance obeys Ohms Law), Capacitive Reactance varies with the applied frequency so any variation in supply frequency will have a big effect on the capacitor’s, “capacitive reactance” value.
In this article, we will be going through semiconductors, first, we will start our article with the introduction of the semiconductor, then we will go through holes and ele Capacitive reactance is the opposition presented by a capacitor to the flow of alternating current (AC) in a circuit. It is measured in ohms (Ω).
It can also be said that if the frequency or capacitance is increased, the opposition to current flow decreases; therefore, capacitive reactance, which is the opposition to current flow, is inversely proportional to frequency and capacitance. Capacitive reactance X C, is measured in ohms, as is inductive reactance.