A capacitor is an electronic component to store electric charge. It is a passive electronic component that can store energy in the electric field between a pair of conductors called “Plates”. In simple words, we can say that a capacitor is a component to store and release electricity, generally as the result of a chemical action.
From energy storage and voltage regulation to signal filtering, circuit protection, and timing and oscillation, capacitors play a vital role in ensuring the proper operation and performance of electronic systems. Understanding the functions of capacitors is essential for anyone involved in electronic design or troubleshooting.
The main function of a capacitor is to store electric energy in an electric field and release this energy to the circuit as and when required. It also allows to pass only AC Current and NOT DC Current. The formula for total capacitance in a parallel circuit is: CT=C1+C2…+Cn.
This separation of charges allows the capacitor to store electrical energy in the form of an electrostatic field. The amount of energy a capacitor can store depends on its capacitance, which is measured in farads (F). The higher the capacitance, the more energy the capacitor can store for a given voltage.
When a sudden voltage surge occurs, a capacitor can absorb the excess energy, preventing it from reaching sensitive components and causing harm. This protective function is often utilized in power supply circuits, where capacitors are placed across the power rails to suppress voltage spikes and transients.
Film capacitors or plastic film capacitors are the most common type of capacitor used in most electronic circuit. There are are non-polarized. They are highly reliable, have long life and have less tolerances. They also function well in high temperature environment. 4. Variable Capacitor These are non-polarized capacitor.