The length of energy storage technologies is divided into two categories: LDES systems can discharge power for many hours to days or even longer, while short-duration storage systems usually remove for a few minutes to a few hours. It is impossible to exaggerate the significance of LDES in reaching net zero.
Storage enables electricity systems to remain in balance despite variations in wind and solar availability, allowing for cost-effective deep decarbonization while maintaining reliability. The Future of Energy Storage report is an essential analysis of this key component in decarbonizing our energy infrastructure and combating climate change.
In January 2022, the National Development and Reform Commission and the National Energy Administration jointly issued the Implementation Plan for the Development of New Energy Storage during the 14th Five-Year Plan Period, emphasizing the fundamental role of new energy storage technologies in a new power system.
The energy storage industry is going through a critical period of transition from the early commercial stage to development on a large scale. Whether it can thrive in the next stage depends on its economics.
Energy storage is a potential substitute for, or complement to, almost every aspect of a power system, including generation, transmission, and demand flexibility. Storage should be co-optimized with clean generation, transmission systems, and strategies to reward consumers for making their electricity use more flexible.
The worldwide energy storage industry is projected to expand from over 27 GW in 2021 to more than 358 GW by 2030, propelled by breakthroughs in technology and declining costs . The ongoing reduction of costs will be driven by the increase in production volumes and the optimization of supply chains.