“It’s interesting that we can use aluminum as a battery material, because it’s cost-effective, highly recyclable, and easy to work with.” The idea of making batteries with aluminum isn’t new. Researchers investigated its potential in the 1970s, but it didn’t work well.
The research team knew that aluminum would have energy, cost, and manufacturing benefits when used as a material in the battery's anode -- the negatively charged side of the battery that stores lithium to create energy -- but pure aluminum foils were failing rapidly when tested in batteries. The team decided to take a different approach.
When used in a conventional lithium-ion battery, aluminum fractures and fails within a few charge-discharge cycles, due to expansion and contraction as lithium travels in and out of the material. Developers concluded that aluminum wasn’t a viable battery material, and the idea was largely abandoned.
Aluminum's manageable reactivity, lightweight nature, and cost-effectiveness make it a strong contender for battery applications. Practical implementation of aluminum batteries faces significant challenges that require further exploration and development.
In some instances, the entire battery system is colloquially referred to as an “aluminum battery,” even when aluminum is not directly involved in the charge transfer process. For example, Zhang and colleagues introduced a dual-ion battery that featured an aluminum anode and a graphite cathode.
Aluminium is lightweight, durable, and has excellent thermal conductivity, making it an ideal material for battery casings. It is crucial to ensure that the batteries are well-protected at all times. Regulations such as AIS-156 Amendment 3 demand the utmost safety of these battery packs.