Since the last decades, perovskite materials are gaining much attention in various electronics applications, especially in solar cells and light emitting diodes. But these are not well explored in energy storage applications.
Perovskite solar cells (PSCs) are transforming the renewable energy sector with their remarkable efficiencies and economical large-scale manufacturing. Perovskite materials have earned significant attention for their unique properties, including high light absorption, efficient charge transport, and ease of fabrication.
Moreover, perovskites can be a potential material for the electrolytes to improve the stability of batteries. Additionally, with an aim towards a sustainable future, lead-free perovskites have also emerged as an important material for battery applications as seen above.
Moreover, perovskite materials have shown potential for solar-active electrode applications for integrating solar cells and batteries into a single device. However, there are significant challenges in applying perovskites in LIBs and solar-rechargeable batteries.
In contrast, perovskite materials can be solution processed, enabling low-embedded energy manufacturing using commercial coating technologies. Compared to silicon solar cells, some emerging solar cells, such as organic solar cells (OSCs), tend to be more cost-effective and wet-processable.
This review summarizes recent and ongoing research in the realm of perovskite and halide perovskite materials for potential use in energy storage, including batteries and supercapacitors. Additionally, it discusses PSC-LIB systems based on the extraction of electrical energy from electrochemical processes.