In this paper, the battery energy storage technology is applied to the traditional EV (electric vehicle) charging piles to build a new EV charging pile with integrated charging, discharging, and storage; Multisim software is used to build an EV charging model in order to simulate the charge control guidance module.
Based on the Internet of Things technology, the energy storage charging pile management system is designed as a three-layer structure, and its system architecture is shown in Figure 9. The perception layer is energy storage charging pile equipment.
Since the smart charging piles are generally deployed in complex environments and prone to failure, it is significant to perform efficient fault diagnosis and timely maintenance for them.
This study has good application prospects in improving the preventive maintenance effect of electric vehicle charging piles. In recent years, electric vehicles have been gradually developed and widely used in many countries due to their advantages of cleanliness, environmental protection, and efficiency.
The simulation results of this paper show that: (1) Enough output power can be provided to meet the design and use requirements of the energy-storage charging pile; (2) the control guidance circuit can meet the requirements of the charging pile; (3) during the switching process of charging pile connection state, the voltage state changes smoothly.
By establishing a preventive maintenance decision model for electric vehicle charging piles, potential faults can be identified in a timely manner and appropriate maintenance measures can be taken, thereby improving the reliability and service quality of the charging piles.