In this paper, the battery energy storage technology is applied to the traditional EV (electric vehicle) charging piles to build a new EV charging pile with integrated charging, discharging, and storage; Multisim software is used to build an EV charging model in order to simulate the charge control guidance module.
Charging pile energy storage system can improve the relationship between power supply and demand. Applying the characteristics of energy storage technology to the charging piles of electric vehicles and optimizing them in conjunction with the power grid can achieve the effect of peak-shaving and valley-filling, which can effectively cut costs.
The charging pile energy storage system can be divided into four parts: the distribution network device, the charging system, the battery charging station and the real-time monitoring system [ 3 ].
The main function of the control device of the energy storage charging pile is to facilitate the user to charge the electric vehicle and to charge the energy storage battery as far as possible when the electricity price is at the valley period. In this section, the energy storage charging pile device is designed as a whole.
The charging pile (as shown in Figure 1) is equivalent to a fuel tanker for a fuel car, which can provide power supply for an electric car.
Portable dc charging piles offer unmatched convenience for electric vehicle (EV) owners, allowing them to recharge their vehicles on the go. This means that even when traditional charging stations are unavailable, drivers can rely on these portable devices to power up their EVs.