If we are willing to understand the basic principle of battery properly, first, we should have some basic concept of electrolytes and electron affinity. Actually, when two dissimilar metals or metallic compounds are immersed in an electrolyte, there will be a potential difference produced between these metals or metallic compounds.
The current in the battery arises from the transfer of electrons from one electrode to the other. During discharging, the oxidation reaction at the anode generates electrons and reduction reaction at the cathode uses these electrons, and therefore during discharging, electrons flow from the anode to the cathode.
This electrical potential difference or emf can be utilized as a source of voltage in any electronics or electrical circuit. This is a general and basic principle of battery and this is how a battery works. All batteries cells are based only on this basic principle. Let’s discuss one by one.
An electric battery is an energy storage device comprising one or more electrochemical cells. These cells have external connections used to power electrical devices. When providing power, the battery’s positive terminal serves as the cathode, while the negative terminal functions as the anode.
The electrolyte also allows the ions to flow between the anode and cathode while separating between the two. Inside the battery, these ions interact with the atoms of each of the two electrodes. This interaction results in electrochemical reactions that, in turn, is essential in the generation of electric current.
Electric battery construction involves several key components that work together to store and deliver electrical energy. Anode (Negative Electrode): The anode is where the oxidation reaction occurs during discharge, releasing electrons into the external circuit. Common anode materials include graphite and lithium compounds in lithium-ion batteries.