Perovskite solar cells (PSCs) have emerged as a subject of strong scientific interest despite their remarkable photoelectric characteristics and economically viable manufacturing processes. After more than ten years of delicate research, PSCs' power conversion efficiency (PCE) has accomplished an astonishing peak value of 25.7 %.
Moreover, perovskites can be a potential material for the electrolytes to improve the stability of batteries. Additionally, with an aim towards a sustainable future, lead-free perovskites have also emerged as an important material for battery applications as seen above.
Moreover, perovskite materials have shown potential for solar-active electrode applications for integrating solar cells and batteries into a single device. However, there are significant challenges in applying perovskites in LIBs and solar-rechargeable batteries.
In various dimensions, low-dimensional metal halide perovskites have demonstrated better performance in lithium-ion batteries due to enhanced intercalation between different layers. Despite significant progress in perovskite-based electrodes, especially in terms of specific capacities, these materials face various challenges.
The review covers perovskite properties, fabrication techniques, and recent advancements in this field. The review addresses challenges including stability, the environmental impact, and issues related to perovskite degradation. The review proposes solutions for boosting efficiency and integrating energy storage to advance PSC manufacturing.
Furthermore, the instability of perovskite materials can cause problems like hysteresis, or variations in the solar cell's output voltage, and lower PCE . In this section, we will review the several factors that affect the stability of PSCs. Moisture intrusion is a significant challenge that can lead to the degradation of PSCs.