The efficiency of a solar cell (sometimes known as the power conversion efficiency, or PCE, and also often abbreviated η) represents the ratio where the output electrical power at the maximum power point on the IV curve is divided by the incident light power – typically using a standard AM1.5G simulated solar spectrum.
The two steps in photovoltaic energy conversion in solar cells are described using the ideal solar cell, the Shockley solar cell equation, and the Boltzmann constant.
Prashant K. Baviskar, Babasaheb R. Sankapal, in Energy Materials, 2021 The overall power conversion efficiency (η) of the PV cell is calculated from the short-circuit photocurrent density (Jsc), open-circuit photovoltage (Voc), FF of the cell, and the incident light intensity (Pin = 100 mW/cm 2).
The model will be used to derive the so-called solar cell equation, which is a widely used relation between the electric current density I leaving the solar cell and the voltage V across the converter. For this purpose, we use the relation for generated power P = I ⋅ V and Eq. (127) and we obtain: By using Eqs. (128), (129) we derive:
This standardised efficiency is known as the power conversion efficiency (PCE) and it is defined using the following equation: PCE represents the conversion ratio of incident power from light energy to usable electrical power. It is determined by three properties of the solar cell, and one property of the incident spectrum:
The principle of solar photovoltaic is to convert solar energy of light (photons) into electricity. When photons heat special materials they create a displacement of electrons that generate a continuous current. Solar cells are connected in series to form photovoltaic panels that are connected together to crate a PV generator.