To comprehend the intricate choreography of the photovoltaic effect, one must first grasp the fundamental concepts of solar radiation and semiconductor physics. Solar radiation, the radiant energy emitted by the sun, serves as the primary source of energy for PV systems.
Photovoltaic technology, often abbreviated as PV, represents a revolutionary method of harnessing solar energy and converting it into electricity. At its core, PV relies on the principle of the photovoltaic effect, where certain materials generate an electric current when exposed to sunlight.
This article delves into the working principle of solar panels, exploring their ability to convert sunlight into electricity through the photovoltaic effect.
A solar panel, which is also referred to as a photovoltaic module, is constructed out of a collection of solar cells and is used to generate electricity for the operation of various useful devices that require a particular voltage or current.
At the heart of a solar panel’s ability to generate electricity is the photovoltaic (PV) effect. Discovered in 1839 by French physicist Edmond Becquerel, the PV effect is the process by which solar cells within the panel convert sunlight into electricity.
The photovoltaic (PV) solar system is made up of a total of three components: (I) photovoltaic cells or solar arrays, (II) the system’s overall equilibrium, and (III) the load. Installing photovoltaic panels, which give clean, green electricity, is one of the most important advantages because it offers significant cost savings.