Internal resistance dynamics reliably capture usage pattern and ambient temperature. Accurately predicting the lifetime of lithium-ion batteries in the early stage is critical for faster battery production, tuning the production line, and predictive maintenance of energy storage systems and battery-powered devices.
Internal resistance is one of the limiting factors for the output power of lithium-ion batteries. When the internal resistance of the battery is high, the current passing through the battery will result in a significant voltage drop, leading to a reduction in the battery’s output power. b. Internal resistance leads to self-discharge in batteries.
Another aspect of Lithium Ion Battery internal resistance is polarization resistance. This resistance arises due to the electrochemical processes occurring within the battery during charge and discharge cycles.
a. Internal resistance is one of the limiting factors for the output power of lithium-ion batteries. When the internal resistance of the battery is high, the current passing through the battery will result in a significant voltage drop, leading to a reduction in the battery’s output power.
For a variety of BTM technologies, the battery’s internal resistance always plays a critical role in the heat generation rate of the battery. Many factors (temperature, SOC and discharge rate) impact on the internal resistance, however, scant research has explored the effect of battery discharge rate on the internal resistance.
In complex electrochemical systems such as a Li-ion battery, electrochemical processes, electrode microstructures and complex transport phenomena all contribute to internal resistance 10. Furthermore, the state of the battery, namely: the battery’s state of charge (SoC) 11, temperature 12 and SoH affects the measured resistance 8.