Overview of a variety of liquid-cooled TEC-Based techniques and their integration into battery thermal management. Compared to using solely liquid cooling, the suggested approach achieved around 20 °C lower in the 40 V test. Battery cell temperatures remained below 40 °C due to liquid cooling circulation.
Discussion: The proposed liquid cooling structure design can effectively manage and disperse the heat generated by the battery. This method provides a new idea for the optimization of the energy efficiency of the hybrid power system. This paper provides a new way for the efficient thermal management of the automotive power battery.
With the increasing application of the lithium-ion battery, higher requirements are put forward for battery thermal management systems. Compared with other cooling methods, liquid cooling is an efficient cooling method, which can control the maximum temperature and maximum temperature difference of the battery within an acceptable range.
Liquid cooling, due to its high thermal conductivity, is widely used in battery thermal management systems. This paper first introduces thermal management of lithium-ion batteries and liquid-cooled BTMS.
Due to their high thermal conductivity and specific heat, liquid cooling systems are particularly effective for large battery packs and high discharge rates [101, 102]. These systems utilise fluids such as water or oil to effectively manage heat.
To verify the effectiveness of the cooling function of the liquid cooled heat dissipation structure designed for vehicle energy storage batteries, it was applied to battery modules to analyze their heat dissipation efficiency.