The costs of delivery and installation are calculated on a volume ratio of 6:1 for Lithium system compared to a lead-acid system. This assessment is based on the fact that the lithium-ion has an energy density of 3.5 times Lead-Acid and a discharge rate of 100% compared to 50% for AGM batteries.
7. CONCLUSION The results showed that the economic analysis of PV stand-alone using lead-acid battery are more suitable than PV stand-alone system using lithium-ion battery, because an initial investment cost of the lead-acid battery is cheaper than lithium-ion battery.
For behind the meter applications, the LCOS for a lithium ion battery is 43 USD/kWh and 41 USD/kWh for a lead-acid battery. A sensitivity analysis is conducted on the LCOS in order to identify key factors to cost development of battery storage.
Income over the life of the project (SNPV), cost of energy (COE), benefit cost ratio (BCR) are 145,927 baht, 34.93 baht and 0.13, respectively. The initial investment lead acid battery is 17,010 baht. Income over the life of the project (SNPV) , cost of energy (COE), benefit cost ratio (BCR) are 89,143 baht, 23.30 baht and 0.19, respectively. 7.
To calculate it, we consider the sum of the cost of batteries + transportation and installation costs (multiplied by the number of times the battery is replaced during its lifetime). The sum of these costs is divided by the net consumption of the system (50kWh per cycle, 365 cycles per year, 8.2 years of use).
Valve regulated lead acid batteries has a lower cost of initial investment, which is suitable for the situations that are sensitive to the initial investment cost. Lithium iron phosphate (LiFePO 4, LFP) battery can be applied in the situations with a high requirement for service life.