The technical challenges and difficulties of the lithium-ion battery management are primarily in three aspects. Firstly, the electro-thermal behavior of lithium-ion batteries is complex, and the behavior of the system is highly non-linear, which makes it difficult to model the system.
To keep the cells operating within their safety limits, the battery management system employs safeguards such as protection circuits and temperature management systems, as has been discussed at length above . 4. Electric motors
EV performance requires the electronic tracking, configuration, and modification of the BMS. It may also identify EV charging stations and anticipate driving range. The BMS maintains battery data from the EV storage system, like voltage and SOC from the LIB, reading temperature, charge and discharge of the battery, and program control.
Section 3 presents a short review of the battery. The battery management system is described in Section 4. BMS issues and challenges are presented in Section 5, and Section 6 presents BMS recommendations. Finally, the conclusion is presented in Section 7. 2.
A knowledge-based, multi-physics-constrained fast charging strategy for lithium-ion batteries is proposed , which considers the thermal safety and aging problems. A model-based state observer and a deep reinforcement learning-based optimizer are combined to obtain the optimal charging strategy for the battery.
Secondly, the internal states of the lithium-ion batteries cannot be directly measured by sensors and is highly susceptible to ambient temperature and noise, which makes accurate battery estimation difficult.