According to , for low currents charging and discharging battery losses are equal, while for higher currents, the discharging losses are approximately 10% more compared to the charging losses. Therefore, the battery percentage charging losses for 10Amps are 0.64%, and for 70Amps are 2.9%.
A good deal of the energy lost during battery charging is due to increased charging losses and the requirement for battery cooling to prevent overheating - approximately 1/3 and 2/3 respectively.
Yes, energy will be lost to the battery. In electric batteries, electrochemical reactions which take place inside the battery, in addition to other factors such as material resistivity and temperature, will cause the battery to possess an internal resistance.
According to the ADAC, you can lose between 10 and 25% of the total amount of energy charged. Quite a number, huh? And the thing is, you normally cannot avoid it - the energy simply gets lost on the way to your vehicle. But why is that? And what can you do to minimise energy loss when charging the battery? Let’s see!
As electricity flows through charging cables and your EV’s internal circuits, it encounters resistance—a natural property of conductive materials. This resistance converts some energy into heat rather than storing it in the battery. The longer or lower quality the cable, the more heat is generated, leading to greater energy loss.
For instance, if you draw 10 kWh from the grid but only 9 kWh is stored in the battery, the charging loss is 10%. While it’s impossible to eliminate energy loss entirely during EV charging, there are several strategies you can employ to minimize these losses.