As fossil fuel generation is progressively replaced with intermittent and less predictable renewable energy generation to decarbonize the power system, Electrical energy storage (EES) technologies are increasingly required to address the supply-demand balance challenge over a wide range of timescales.
Electrical Energy Storage, EES, is one of the key technologies in the areas covered by the IEC. EES techniques have shown unique capabilities in coping with some critical characteristics of electricity, for example hourly variations in demand and price.
traction, e.g. in an electric vehicle. For further reading, and a more in-depth insight into the topics covered here, the IET’s Code of Practice for Energy Storage Systems provides a reference to practitioners on the safe, effective and competent application of electrical energy storage systems. Publishing Spring 2017, order your copy now!
The integrated storage system is designed to cover 100 % of the demand with the energy generated by the PV system during the summer. During the rest of the year a little additional energy has to be purchased from the grid.
With the exception of superconductivity, other current technological solutions rely on chemical, mechanical, gravitational, or electro-static forms of energy. Nevertheless, electricity storage systems are strongly needed to guarantee the continuous balance of the power grid and provide reliable and effective service to the final users.
Thermal energy is stored solely through a change of temperature of the storage medium. The capacity of a storage system is defi ned by the specifi c heat capacity and the mass of the medium used. Latent heat storage is accomplished by using phase change materials (PCMs) as storage media.