Limited energy density: They have a lower energy density than lithium-ion batteries, resulting in a lower capacity and shorter runtime. Maintenance requirements: Lead acid batteries require periodic maintenance, including electrolyte level checks and occasional equalization charging. Applications
Lead–acid batteries may be flooded or sealed valve-regulated (VRLA) types and the grids may be in the form of flat pasted plates or tubular plates. The various constructions have different technical performance and can be adapted to particular duty cycles. Batteries with tubular plates offer long deep cycle lives.
The competitive position between lead batteries and other types of battery indicates that lead batteries are competitive in technical performance in static installations. Table 2 provides a summary of the key parameters for lead–acid and Li-ion batteries.
Improvements to lead battery technology have increased cycle life both in deep and shallow cycle applications. Li-ion and other battery types used for energy storage will be discussed to show that lead batteries are technically and economically effective. The sustainability of lead batteries is superior to other battery types.
Li-ion batteries have advantages in terms of energy density and specic energy but fi this is less important for static installations. The other technical features of Li-ion and other types of battery are discussed in relation to lead batteries.
Batteries use 85% of the lead produced worldwide and recycled lead represents 60% of total lead production. Lead–acid batteries are easily broken so that lead-containing components may be separated from plastic containers and acid, all of which can be recovered.