Now since we have very well established that suitably designed Capacitor Banks can be connected in parallel to the loads connected to DG. However, what is the impact if one keeps on improving the power factor and the power factor goes on the leading side.
One of the challenges for utilizing capacitor banks for power quality improvements is determining the optimum location, size, and number of capacitors for a specific electrical distribution system. Indeed, several factors need to be taken into account to control the overall power quality throughout the system.
When a number of capacitors are connected together in series or parallel, forms a capacitor bank. These are used for reactive power compensation. Connecting the capacitor bank to the grid improves reactive power and hence the power factor. As shown in the figure, capacitors are connected in series to improve the power factor rating.
The primary objective of this capacitor bank is to enhance the power factor of a factory. Local regulatory standards dictate that the power factor for bulk supply connections must be maintained at 0.9 or higher.
Capacitor banks play a pivotal role in substations, serving the dual purpose of enhancing the power factor of the system and mitigating harmonics, which ultimately yields a cascade of advantages. Primarily, by improving the power factor, capacitor banks contribute to a host of operational efficiencies.
Now if we connect the suitably sized and designed (already discussed in part1 to 3) capacitor bank in parallel to the loads connected to DG and improve the average overall load power factor from 0.7 to 0.85 then for the same percentage loading of 85.7% that is 857kVA the active power that can be drawn is = 857 x 0.85 = 728.45 kW