Once the capacitor is connected to the DC voltage source, it will charge up to the voltage that the DC voltage source is outputting. So, if a capacitor is connected to a 9-volt battery, it will charge up to 9 volts. If a capacitor is connected to a DC power supply outputting 15 volts, it will charge up to 15 volts.
A capacitor will always charge up to its rated charge, if fed current for the needed time. However, a capacitor will only charge up to its rated voltage if fed that voltage directly. A rule of thumb is to charge a capacitor to a voltage below its voltage rating.
A rule of thumb is to charge a capacitor to a voltage below its voltage rating. If you feed voltage to a capacitor which is below the capacitor's voltage rating, it will charge up to that voltage, safely, without any problem. If you feed voltage greater than the capacitor's voltage rating, then this is a dangerous thing.
Without V IN, a power source, a capacitor cannot charge. Capacitors can only store voltage which they are supplied through a power source. The larger V IN , the greater the voltage the capacitor charges to, since it is being supplied greater voltage.
A capacitor is charged by connecting it to a DC voltage source. This may be a battery or a DC power supply. Once the capacitor is connected to the DC voltage source, it will charge up to the voltage that the DC voltage source is outputting. So, if a capacitor is connected to a 9-volt battery, it will charge up to 9 volts.
Capacitors come in a whole range of capacitance capabilities. There are capacitors that can hold 1 picofarad of charge (10 -12 C) and there are other capacitors that can hold 4700µF of charge. So the amount that a capacitor can charge depends on the capacitor at hand. The same thing applies for the amount of voltage that it holds.
The voltage of a charged capacitor, V = Q/C. Q– Maximum charge. The instantaneous voltage, v = q/C. q– instantaneous charge. q/C =Q/C (1- e -t/RC) q = Q (1- e -t/RC) Charging current. For a capacitor, the flow of the charging current decreases gradually to zero in …