For solar-plus-storage—the pairing of solar photovoltaic (PV) and energy storage technologies—NREL researchers study and quantify the unique economic and grid benefits reaped by distributed and utility-scale systems. Much of NREL's current energy storage research is informing solar-plus-storage analysis.
As the world continues its transition toward cleaner and more renewable energy sources, the trends in solar storage technology are poised to play a pivotal role in shaping the future of our energy infrastructure.
Nonetheless, it was also estimated that in 2020 these services could be economically feasible for PV power plants. In contrast, in , the energy storage value of each of these services (firming and time-shift) were studied for a 2.5 MW PV power plant with 4 MW and 3.4 MWh energy storage. In this case, the PV plant is part of a microgrid.
The solar storage market is not only adapting to these challenges but also stands to benefit from the increasing need for reliable energy storage in a changing climate landscape. In 2024, installers will address an education gap caused by shifts to energy storage from standalone PV.
Li-ion and flow batteries can also provide market oriented services. The best location of the storage should be considered and depends on the service. Energy storage can play an essential role in large scale photovoltaic power plants for complying with the current and future standards (grid codes) or for providing market oriented services.
Solar-plus-storage shifts some of the solar system's output to evening and night hours and provides other grid benefits. NREL employs a variety of analysis approaches to understand the factors that influence solar-plus-storage deployment and how solar-plus-storage will affect energy systems.