However, most of the alternative battery technologies considered have a lower energy density than lithium-ion batteries, which is why a larger quantity of raw materials is typically required to achieve the same storage capacity.
Lithium batteries are primarily non-rechargeable and designed for single-use applications. Lithium-ion batteries can be recharged, allowing for multiple use cycles, which enhances their lifespan and value. Lithium batteries tend to have a lower energy density than lithium-ion batteries, which can limit their use in high-energy applications.
Both types are used in diverse applications, from small consumer electronics to larger systems like power tools and backup energy solutions. Lithium batteries are primarily non-rechargeable and designed for single-use applications. Lithium-ion batteries can be recharged, allowing for multiple use cycles, which enhances their lifespan and value.
Lithium-ion batteries are typically lighter and more compact, making them a preferred choice for modern portable electronics and electric vehicles. Lithium batteries are less expensive per unit, but the cost adds up over time due to the need for frequent replacements.
Sodium is more abundant and cheaper than lithium, making sodium-ion batteries a potentially more cost-effective alternative. Additionally, they are less prone to overheating and are more stable at high temperatures. However, they currently offer a lower energy density than lithium-ion batteries.
"Recycling a lithium-ion battery consumes more energy and resources than producing a new battery, explaining why only a small amount of lithium-ion batteries are recycled," says Aqsa Nazir, a postdoctoral research scholar at Florida International University's battery research laboratory.