4. Conclusion The mixing process of electrode-slurry plays an important role in the electrode performance of lithium-ion batteries (LIBs). The dispersion state of conductive materials, such as acetylene black (AB), in the electrode-slurry directly influences the electronic conductivity in the composite electrodes.
The influence of industrial-suited mixing and dispersing processes on the processability, structure, and properties of suspensions and electrodes for lithium-ion batteries is investigated for the case of ultrathick NCM 622 cathodes (50 mg cm −2).
Lithium-ion battery electrodes are manufactured in several stages. Materials are mixed into a slurry, which is then coated onto a foil current collector, dried, and calendared (compressed).
Spent lithium-ion batteries (S-LIBs) contain valuable metals and environmentally hazardous chemicals, necessitating proper resource recovery and harmless treatment of these S-LIBs. Therefore, research on S-LIBs recycling is beneficial for sustainable EVs development.
Today, the lithium-ion battery (LIB) is regarded as the most promising technology to power battery electric vehicles. For its breakthrough, reduced production costs and increased safety and charging performance are demanded.
Currently, the number of LIBs worldwide is growing exponentially, which also leads to an increase in discarded LIBs. Spent lithium-ion batteries (S-LIBs) contain valuable metals and environmentally hazardous chemicals, necessitating proper resource recovery and harmless treatment of these S-LIBs.