The internet of things is used to develop and rectify real time monitoring systems for sundry lead-acid batteries . The suggested system tracked and recorded characteristics Such as the acid level, charge status, voltage, current, and remaining charge capacity of the lead acid battery in real time. ...
To monitor these lead–acid battery parameters, we have developed a data acquisition system by building an embedded system, i.e., dedicated hardware and software. The wireless local area network is used as the backbone network.
Since the lead-acid battery invention in 1859 , the manufacturers and industry were continuously challenged about its future. Despite decades of negative predictions about the demise of the industry or future existence, the lead-acid battery persists to lead the whole battery energy storage business around the world [ 2, 3 ].
The problem can occur for a variety of reasons. All lead acid cells and batteries, in particular those for automotive SLI (starting lighting and ignition) systems and for solar (photovoltaic) applications, are vulnerable if deeply-discharged and then left in a fully discharged condition.
In which concern the first methodology, we aimed to predict the SoH evolution of lead-acid battery under controlled aging conditions, by interpreting the EIS data. Our analysis is mainly based on the effect of linear decay for the values of CPE in the equivalent circuit of the battery during the aging.
Distinguished fabrication features of electrode grid composition [ 11, 12 ], electrolyte additives [ 13, 14 ], or oxide paste additives embodiment [ 15, 16] have been employed in recent years as new technological approaches for lead-acid batteries improvement.