The drying process of lithium-ion battery electrodes is one of the key processes for manufacturing electrodes with high surface homogeneity and is one of the most energy-consuming stages. The choice of the drying parameters has a significant impact on the electrode properties and the production efficiency.
Moreover, the use of laser drying as a complementary process step in the production of lithium-ion batteries needs to be investigated. This aims at the further reduction of the residual moisture reabsorbed after the actual electrode drying process.
Coupled electrode coating and convection drying machine for the use in lithium-ion battery cells The production step of drying is commonly carried out in a roll-to-roll process immediately after coating.
In the study of drying techniques for lithium batteries, the key point is the relationship between the amount of electrode dewatering and various dominant factors during drying.
The starting point for drying battery electrodes on an industrial scale is a wet film of particulate solvent dispersions, which are applied to a current collector foil by slot-die coating. Conventional convective drying removes the solvent from the wet film and solidifies the layer as the drying time progresses ( Figure 1 ).
In recent years, initial investigations of electrode drying using lasers have been carried out and government-funded research projects like ExLaLib, [ 42, 43 ] LaserScale, [ 44 ] and Ideel [ 45, 46 ] look into the laser drying technology for lithium-ion battery electrodes.