Some of the common challenges to opportunities of hydrogen storage are highlighted below. 1. Low Energy Density by Volume: Hydrogen has a low energy density per unit volume, leading to the need for efficient storage technologies to store an economically viable amount of energy. 2.
However, not all hydrogen storage technologies are suitable for long-term storage. Long-term and efficient storage of hydrogen energy is also one of the key issues in the development of hydrogen energy on a large scale and one of the constraints that limit the high price of hydrogen energy.
The findings demonstrate that incorporating an energy storage system (ESS) can cut operational costs by 18 %. However, the utilization of a hydrogen storage system can further slash costs, achieving reductions of up to 26 % for energy suppliers and up to 40 % for both energy and reserve suppliers.
Combining Figure 4 and Figure 5, hydrogen energy storage has the advantages of high energy density, large storage scale, and the ability to cross seasons, making it the optimal solution for participating in the long-term energy storage of new power systems.
Additionally, the long-term stability and safety of the aquifer must be carefully assessed to ensure that hydrogen can be stored safely and securely. Another storage technology is using depleted oil and gas fields, which are considered potential storage options for hydrogen due to a large storage capacity for hydrogen .
Long-term and efficient storage of hydrogen energy is also one of the key issues in the development of hydrogen energy on a large scale and one of the constraints that limit the high price of hydrogen energy. Therefore, long-term storage of hydrogen in a safe and stable form is a prerequisite.