Moreover, perovskites can be a potential material for the electrolytes to improve the stability of batteries. Additionally, with an aim towards a sustainable future, lead-free perovskites have also emerged as an important material for battery applications as seen above.
Ahmad et al. demonstrated the use of 2D lead-based perovskites, namely, (C 6 H 9 C 2 H 4 NH 3) 2 PbI 4, as a photo-active electrode material in a lithium-ion battery [ Figs. 4 (a) and 4 (b) ]. 90 The battery with the iodide perovskite showed a specific capacity up to 100 mAh g −1 at 30 mA g −1.
It is worth noticing that after the current density dropped from 1500 to 150 mA g −1, the stable specific capacity further restored to 595.6 mAh g −1, which was 86% of the initial stable capacity, showing the potential of perovskite-based lithium-ion batteries for fast charge and discharge.
The conversion reaction and alloying/dealloying can change the perovskite crystal structure and result in the decrease of capacity. The discharge capacity of battery in dark environment is 410 mA h g −1, but the capacity value increased to 975 mA h g −1 for discharging under illumination (Fig. 21 e).
Here, by adjusting the dimensionality of perovskite, we fabricated high-performing one-dimensional hybrid perovskite C H PbBr One-dimensional hybrid perovskite C H N PbBr based lithium-ion batteries have achieved a stable specific capacity of 598 mAh g −1 after 50 cycles, with good stability tested for up to 500 cycles.
In various dimensions, low-dimensional metal halide perovskites have demonstrated better performance in lithium-ion batteries due to enhanced intercalation between different layers. Despite significant progress in perovskite-based electrodes, especially in terms of specific capacities, these materials face various challenges.