As one of the most common cathode materials for aqueous zinc-ion batteries (AZIBs), manganese oxides have the advantages of abundant reserves, low cost, and low toxicity.
However, the electrochemical mechanism at the cathode of aqueous zinc–manganese batteries (AZMBs) is complicated due to different electrode materials, electrolytes and working conditions. These complicated mechanisms severely limit the research progress of AZMBs system and the design of cells with better performance.
Current state of research on zinc-ion battery electrolytes and their effect on the cathode interface Electrolyte is an essential component of a battery, serving as the medium for connecting the positive and negative electrodes and facilitating ion transfer.
Up to the present, several kinds of cathode materials have been employed for aqueous zinc-ion batteries, including manganese-based, vanadium-based, organic electrode materials, Prussian Blues, and their analogues, etc.
So far, the main electrolytes used in aqueous zinc-ion batteries are aqueous ZnSO 4 and zinc salts such as Zn (CF 3 SO 3) 2.
The aqueous zinc ion battery is generally composed of zinc metal as the anode, active material as the cathode, and aqueous electrolyte. However, there are still many problems with the cathode/anode material and voltage window of the battery, which limit its use.