The limitations of conventional energy storage systems have led to the requirement for advanced and efficient energy storage solutions, where lithium-ion batteries are considered a potential alternative, despite their own challenges .
Lithium-sulfur batteries (Figure 2), like solid-state batteries, are poised to overcome the limitations of traditional lithium-ion batteries (Wang et al., 2023). These batteries offer a high theoretical energy density and have the potential to revolutionize energy storage technologies (Wang et al., 2022).
However, there are still key obstacles that must be overcome in order to further improve the production technology of LIBs, such as reducing production energy consumption and the cost of raw materials, improving energy density, and increasing the lifespan of batteries .
Lithium-ion batteries remain dominant in portable electronics and electric vehicles due to their high energy density and performance, despite concerns regarding resource limitations and environmental impact.
Provided by the Springer Nature SharedIt content-sharing initiative Lithium-ion batteries (LIBs) have attracted significant attention due to their considerable capacity for delivering effective energy storage. As LIBs are t
Therefore, new production technologies will be necessary in comparison to the conventional production of lithium-ion cells [183, 184]. High power density, high energy density, safety, low cost, and long life time are all essential characteristics of ASSBs, particularly when applied to electric vehicle applications .