This document describes an experiment on charging and discharging of capacitors. It involves using a 100μF capacitor, 1MΩ resistor, 9V battery, and multimeter. The procedure is to connect these components in a circuit and take voltage readings across the capacitor at 20 second intervals as it charges.
Date of Submission: 19th March 2015. Abstract: The purpose of this experiment is to investigate the charging and the discharging of a capacitor. In this experiment a capacitor is charged and discharged and the time taken is recorded at equal intervals. Objective: To investigate the charge and the discharge of a capacitor.
The charging and discharging time is one of the crucial factors in the calculation of charge in the device. The charging time of the capacitor is very small and discharging time will be very high. Since we can block the discharging path then the discharging time can be increased to two to three days.
capacitor is equal to the potential difference across the battery. Because the current changes throughout charging, the rate of flow of charge will not be linear.At the start, the current will be at its highest but will graduall decrease to zero. The following graphs summarise capacitor charge. The potential diffe
while charging/discharging the capacitor Compare with the theoretical alculation. [See sub-sections 5.4 & 5.5].Estimate the leakage resistance of the given capacitor by studying a se ies RC circuit. Explor
harges, electrons flow onto one plate and move off the other plate. This process will be continued until the potential difference across th capacitor is equal to the potential difference across the battery. Because the current changes throughout charging, the rate of flow of charge will not be linear.At the start, the