This proves that capacitance is lower when capacitors are connected in series. Now place the capacitors in parallel. Take the multimeter probes and place one end on the positive side and one end on the negative. You should now read 2µF, or double the value, because capacitors in parallel add together.
Now place the capacitors in parallel. Take the multimeter probes and place one end on the positive side and one end on the negative. You should now read 2µF, or double the value, because capacitors in parallel add together. This is a practical, real-life test you can do to show how capacitors work.
Meters such as the Fluke 110, 170, and 180 series can provide the required data necessary to determine the presence of a failed capacitor. Although other test methods are available, such as live testing, this technical note is centered on testing capacitors in their de-energized state.
Afterall, capacitors are storage devices. They store a potential difference of charges across their plate, which are voltages. The anode has a positive voltage and the cathode has a negative voltage. A test that you can do is to see if a capacitor is working as normal is to charge it up with a voltage and then read the voltage across the terminals.
Another check you can do is check the capacitance of the capacitor with a multimeter, if you have a capacitance meter on your multimeter. All you have to do is read the capacitance that is on the exterior of the capacitor and take the multimeter probes and place them on the leads of the capacitor. Polarity doesn't matter.
One important point to remember about parallel connected capacitor circuits, the total capacitance ( CT ) of any two or more capacitors connected together in parallel will always be GREATER than the value of the largest capacitor in the group as we are adding together values.