In this paper, different energy storage mechanisms of vanadium-based positive electrodes are summarized. Typical structures, such as layered and tunnel types, are particularly emphasized. Moreover, the comparison and analysis of electrochemical results of vanadium-based compounds, including vanadium oxide and metal vanadate are focused.
Aqueous zinc ion batteries (AZIBs) stand out from numerous rechargeable aqueous metal-ion batteries due to its various advantages, such as high theoretical capacity (820 mAh/g or 5855 mAh/cm 3), low redox potential (–0.762 V vs. standard hydrogen electrode), high stability and abundant zinc resources , , , , , .
Zinc-ion batteries (ZIBs) are highly promising for large-scale energy storage because of their safety, high energy/power density, low cost, and eco-friendliness. Vanadium-based compounds are attractive cathodes because of their versatile structures and multielectron redox processes (+5 to +3), leading to high capacity.
In recent years, rechargeable aqueous zinc ion batteries (ZIBs), as emerging energy storage devices, stand out from numerous metal ion batteries. Due to the advantages of low cost, environmentally friendly characteristic and safety, ZIBs can be considered as alternatives to lithium-ion batteries (LIBs).
Vanadium-based compounds with various structures and large layer spacings are considered as suitable cathode candidates for ZIBs. In this review, the recent research advances of vanadium-based electrode materials are systematically summarized. The electrode design strategy, electrochemical performances and energy storage mechanisms are emphasized.
As an emerging energy storage device with high-safety aqueous electrolytes, low-cost, environmental benignity and large-reserves, the rechargeable aqueous zinc-ion batteries (AZIBs) have attracted more and more attention.