Battery storage is becoming an increasingly popular addition to solar energy systems. Two of the most common battery chemistry types are lithium-ion and lead acid. As their names imply, lithium-ion batteries are made with the metal lithium, while lead-acid batteries are made with lead. How do lithium-ion and lead acid batteries work?
Li-Titanate batteries are green & eco-friendly. The disadvantage is that lithium-titanate batteries have a lower inherent voltage (2.4V/cell), which leads to a lower energy density than conventional lithium-ion battery technologies. But the energy density of LTO ‐ based batteries is still higher than lead acid and NiCad batteries.
Although the energy density of LTO‐based batteries is low compared to other lithium ion batteries, it is still higher than lead acid and NiCad batteries. There are numerous applications where lead acid batteries and NiCad batteries are used in conjunction with generators.
Lead acid batteries are still widely used due to their low cost, matured state of development and ruggedness compared to other battery technologies. However, lead acid batteries (both flooded and VRLA) are heavier and bulkier.
Due to its low voltage of operation the lithium titanate based batteries offer much safer operating parameters. Lithium batteries provide a variety of design choices to meet a variety of application needs. No single chemistry will meet all the application needs.
A disadvantage of lithium-titanate batteries is their lower inherent voltage (2.4 V), which leads to a lower specific energy (about 30–110 Wh/kg ) than conventional lithium-ion battery technologies, which have an inherent voltage of 3.7 V. Some lithium-titanate batteries, however, have an volumetric energy density of up to 177 Wh/L.