Capacitors exhibit exceptional power density, a vast operational temperature range, remarkable reliability, lightweight construction, and high efficiency, making them extensively utilized in the realm of energy storage. There exist two primary categories of energy storage capacitors: dielectric capacitors and supercapacitors.
Supercapacitors, bridging conventional capacitors and batteries, promise efficient energy storage. Yet, challenges hamper widespread adoption. This review assesses energy density limits, costs, materials, and scalability barriers.
Furthermore, supercapacitors have longer cycle life than batteries because the chemical phase changes in the electrodes of a supercapacitor are much less than that in a battery during continuous charging/discharging (Yu, Davies, and Chen, 2012). These key attributes make supercapacitors more attractive and versatile as high powered energy storages.
The energy storage capacitor bank is commonly used in different fields like power electronics, battery enhancements, memory protection, power quality improvement, portable energy sources, high power actuators, ASDs, hybrid electric vehicles, high power actuators, off-peak energy storage, and military and aerospace applications.
Capacitors possess higher charging/discharging rates and faster response times compared with other energy storage technologies, effectively addressing issues related to discontinuous and uncontrollable renewable energy sources like wind and solar .
Ragone plot for significant energy storage and conversion devices. From the plot in Figure 1, it can be seen that supercapacitor technology can evidently bridge the gap between batteries and capacitors in terms of both power and energy densities.