At the heart of its efficacy lies the efficiency of PV materials, which dictates the extent to which sunlight is transformed into electricity. Over the last decade, substantial advancements in PV efficiency have propelled the widespread adoption of solar PV technology on a global scale.
Photovoltaic (PV) cell technologies are rapidly improving, with efficiencies reaching up to 30% and costs falling below $ 0.50/W, making PV a competitive source of energy in many countries around the world. Solar PV technology holds immense potential for creating a cleaner, reliable, scalable, and cost-effective electricity system.
This report clearly points out that solar PV is one of the strategic renewable technologies needed to realise the global energy transformation in line with the Paris climate goals. The technology is available now, could be deployed quickly at a large scale and is cost-competitive.
Solar PV is one of the fastest-growing, most mature and cost-competitive renewable energy technologies. The deployment of renewables has been growing at a rapid pace in recent years, reaching record levels and outpacing annual conventional power capacity additions in many regions.
Photovoltaic (PV) efficiency refers to the ability of a photovoltaic device, such as a solar cell or solar panel, to convert sunlight into usable electrical energy. It is expressed as a percentage and represents the ratio of electrical power output to the amount of sunlight (solar energy) input.
Currently, thin-film technology accounts for only 5% of the global solar PV market, while silicon-based solar modules still hold approximately 95% of the global PV module market (GlobalData, 2018).